Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Bioinformatics ; 24(1): 453, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036971

RESUMO

BACKGROUND: Genomic insights in settings where tumour sample sizes are limited to just hundreds or even tens of cells hold great clinical potential, but also present significant technical challenges. We previously developed the DigiPico sequencing platform to accurately identify somatic mutations from such samples. RESULTS: Here, we complete this genomic characterisation with copy number. We present a novel protocol, PicoCNV, to call allele-specific somatic copy number alterations from picogram quantities of tumour DNA. We find that PicoCNV provides exactly accurate copy number in 84% of the genome for even the smallest samples, and demonstrate its clinical potential in maintenance therapy. CONCLUSIONS: PicoCNV complements our existing platform, allowing for accurate and comprehensive genomic characterisations of cancers in settings where only microscopic samples are available.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Genoma , Genômica , Neoplasias/genética , Neoplasias/patologia , DNA de Neoplasias/genética
3.
Genome Biol ; 23(1): 35, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078504

RESUMO

BACKGROUND: Genetic alterations of somatic cells can drive non-malignant clone formation and promote cancer initiation. However, the link between these processes remains unclear and hampers our understanding of tissue homeostasis and cancer development. RESULTS: Here, we collect a literature-based repertoire of 3355 well-known or predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-cancer samples reveals that, despite the large size, the known compendium of drivers is still incomplete and biased towards frequently occurring coding mutations. High overlap exists between drivers of cancer and non-cancer somatic evolution, although significant differences emerge in their recurrence. We confirm and expand the unique properties of drivers and identify a core of evolutionarily conserved and essential genes whose germline variation is strongly counter-selected. Somatic alteration in even one of these genes is sufficient to drive clonal expansion but not malignant transformation. CONCLUSIONS: Our study offers a comprehensive overview of our current understanding of the genetic events initiating clone expansion and cancer revealing significant gaps and biases that still need to be addressed. The compendium of cancer and non-cancer somatic drivers, their literature support, and properties are accessible in the Network of Cancer Genes and Healthy Drivers resource at http://www.network-cancer-genes.org/ .


Assuntos
Neoplasias , Oncogenes , Evolução Clonal , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia
4.
Genome Med ; 13(1): 12, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33517897

RESUMO

BACKGROUND: Identifying the complete repertoire of genes that drive cancer in individual patients is crucial for precision oncology. Most established methods identify driver genes that are recurrently altered across patient cohorts. However, mapping these genes back to patients leaves a sizeable fraction with few or no drivers, hindering our understanding of cancer mechanisms and limiting the choice of therapeutic interventions. RESULTS: We present sysSVM2, a machine learning software that integrates cancer genetic alterations with gene systems-level properties to predict drivers in individual patients. Using simulated pan-cancer data, we optimise sysSVM2 for application to any cancer type. We benchmark its performance on real cancer data and validate its applicability to a rare cancer type with few known driver genes. We show that drivers predicted by sysSVM2 have a low false-positive rate, are stable and disrupt well-known cancer-related pathways. CONCLUSIONS: sysSVM2 can be used to identify driver alterations in patients lacking sufficient canonical drivers or belonging to rare cancer types for which assembling a large enough cohort is challenging, furthering the goals of precision oncology. As resources for the community, we provide the code to implement sysSVM2 and the pre-trained models in all TCGA cancer types ( https://github.com/ciccalab/sysSVM2 ).


Assuntos
Genes Neoplásicos , Neoplasias/genética , Estudos de Coortes , Simulação por Computador , Bases de Dados Genéticas , Humanos , Polimorfismo de Nucleotídeo Único/genética , Curva ROC , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte
5.
Nat Commun ; 10(1): 3101, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308377

RESUMO

The identification of cancer-promoting genetic alterations is challenging particularly in highly unstable and heterogeneous cancers, such as esophageal adenocarcinoma (EAC). Here we describe a machine learning algorithm to identify cancer genes in individual patients considering all types of damaging alterations simultaneously. Analysing 261 EACs from the OCCAMS Consortium, we discover helper genes that, alongside well-known drivers, promote cancer. We confirm the robustness of our approach in 107 additional EACs. Unlike recurrent alterations of known drivers, these cancer helper genes are rare or patient-specific. However, they converge towards perturbations of well-known cancer processes. Recurrence of the same process perturbations, rather than individual genes, divides EACs into six clusters differing in their molecular and clinical features. Experimentally mimicking the alterations of predicted helper genes in cancer and pre-cancer cells validates their contribution to disease progression, while reverting their alterations reveals EAC acquired dependencies that can be exploited in therapy.


Assuntos
Adenocarcinoma/genética , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Esofágicas/genética , Perfilação da Expressão Gênica/métodos , Medicina de Precisão/métodos , Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Progressão da Doença , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Instabilidade Genômica , Humanos , Aprendizado de Máquina , Modelos Genéticos , Família Multigênica/efeitos dos fármacos , Taxa de Mutação , Polimorfismo de Nucleotídeo Único
6.
Genome Biol ; 20(1): 1, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606230

RESUMO

The Network of Cancer Genes (NCG) is a manually curated repository of 2372 genes whose somatic modifications have known or predicted cancer driver roles. These genes were collected from 275 publications, including two sources of known cancer genes and 273 cancer sequencing screens of more than 100 cancer types from 34,905 cancer donors and multiple primary sites. This represents a more than 1.5-fold content increase compared to the previous version. NCG also annotates properties of cancer genes, such as duplicability, evolutionary origin, RNA and protein expression, miRNA and protein interactions, and protein function and essentiality. NCG is accessible at http://ncg.kcl.ac.uk/ .


Assuntos
Bases de Dados Genéticas , Genes Neoplásicos , Heterogeneidade Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...